Bayes to the Rescue Markov Chain Monte Carlo in the pMSSM

Mike Saelim

Laboratory for Elementary Particle Physics
Cornell University

TASI '11

Outline

- Motivation: Scanning the pMSSM
- 2 Bayesian Statistics
- Markov Chain Monte Carlo
- Pretty Pictures

- pMSSM = phenomenological Minimal Supersymmetric Standard Model
 - EWSB-scale model with 22 soft parameters
 - First and second generations degenerate

3 gaugino masses:
$$M_1$$
, M_2 , M_3
4 slepton masses: m_{e_I} , m_{τ_I} , m_{e_R} , m_{τ_R}

• 6 squark masses:
$$m_{qu_L}, m_{Q_L}, m_{U_R}, m_{d_R}, m_{t_R}, m_{b_R}$$
 6 trilinear couplings: $A_e, A_\tau, A_u, A_d, A_t, A_b$

3 Higgs sector parameters: M_A (pole), $\tan \beta (m_Z)$, μ

- Future scenario: measurements have picked out a benchmark point (BP) in the pMSSM.
- Given the values and uncertainties of these measurements
 - What is our uncertainty in the benchmark point
 - What are the predicted values and theoretical uncertainties for not-vet-measured quantities?

- pMSSM = phenomenological Minimal Supersymmetric Standard Model
 - EWSB-scale model with 22 soft parameters
 - First and second generations degenerate

```
3 gaugino masses: M_1, M_2, M_3
4 slepton masses: m_{e_I}, m_{\tau_I}, m_{e_R}, m_{\tau_R}
```

• 6 squark masses: $m_{qu_L}, m_{Q_L}, m_{U_R}, m_{d_R}, m_{t_R}, m_{b_R}$ 6 trilinear couplings: $A_e, A_\tau, A_u, A_d, A_t, A_b$ 3 Higgs sector parameters: M_A (pole), $\tan \beta (m_Z), \mu$

- Future scenario: measurements have picked out a benchmark point (BP) in the pMSSM.
- Given the values and uncertainties of these measurements,
 - What is our uncertainty in the benchmark point?
 - What are the predicted values and theoretical uncertainties for not-yet-measured quantities?

Okay... how?

- Scan around the BP to figure out how likely each point is, given the measurements
- Traditional method: grid scan! But...
 - ...in order to get a fine enough resolution, you'll be scanning for years.
- Solution: Markov Chain Monte Carlo
 - E.A. Baltz, M. Battaglia, M. Peskin, T. Wizansky (hep-ph/0602187)
 - S.S. AbdusSalam, B.C. Allanach, F. Quevedo, F. Feroz, M. Hobson (0904.2548)
 - J. Dunkley, M. Bucher, P.G. Ferreira, K. Moodley, C. Skordis (astro-ph/0405462)

Okay... how?

- Scan around the BP to figure out how likely each point is, given the measurements
- Traditional method: grid scan! But...
 - ...in order to get a fine enough resolution, you'll be scanning for years.
- Solution: Markov Chain Monte Carlo
 - E.A. Baltz, M. Battaglia, M. Peskin, T. Wizansky (hep-ph/0602187
 - S.S. AbdusSalam, B.C. Allanach, F. Quevedo, F. Feroz, M. Hobson (0904.2548)
 - J. Dunkley, M. Bucher, P.G. Ferreira, K. Moodley, C. Skordis (astro-ph/0405462)

Okay... how?

- Scan around the BP to figure out how likely each point is, given the measurements
- Traditional method: grid scan! But...
 - ...in order to get a fine enough resolution, you'll be scanning for years.
- Solution: Markov Chain Monte Carlo
 - E.A. Baltz, M. Battaglia, M. Peskin, T. Wizansky (hep-ph/0602187)
 - S.S. AbdusSalam, B.C. Allanach, F. Quevedo, F. Feroz, M. Hobson (0904.2548)
 - J. Dunkley, M. Bucher, P.G. Ferreira, K. Moodley, C. Skordis (astro-ph/0405462)

- I want the Bayesian posterior probability density function (PDF)
 - The probability of each point in the pMSSM being true after being "confronted" with "evidence"

Bayes' Theorem

For parameters X and data D,

Posterior PDF(X|D) $\sim \mathcal{L}(X|D) \times \text{Prior PDF}(X)$

- In a way, all of science works this way
- This has also led to Bayesian Search Theory, which has been used to recover
 - ▶ lost submarines (USS Scorpion)
 - lost oil tankers (MV Derbyshire)
 - lost historical ships (SS Central America)
 - lost undetonated fusion warheads (Palomares incident)

- I want the Bayesian posterior probability density function (PDF)
 - The probability of each point in the pMSSM being true after being "confronted" with "evidence"

Bayes' Theorem

For parameters X and data D,

Posterior PDF(
$$X|D$$
) $\sim \mathcal{L}(X|D) \times \text{Prior PDF}(X)$

- In a way, all of science works this way
- This has also led to Bayesian Search Theory, which has been used to recover
 - lost submarines (USS Scorpion)
 - lost oil tankers (MV Derbyshire)
 - lost historical ships (SS Central America)
 - lost undetonated fusion warheads (Palomares incident)

- I want the Bayesian posterior probability density function (PDF)
 - The probability of each point in the pMSSM being true after being "confronted" with "evidence"

Bayes' Theorem

For parameters X and data D,

Posterior PDF(
$$X|D$$
) $\sim \mathcal{L}(X|D) \times \text{Prior PDF}(X)$

- In a way, all of science works this way
- This has also led to Bayesian Search Theory, which has been used to recover
 - lost submarines (USS Scorpion)
 - lost oil tankers (MV Derbyshire)
 - lost historical ships (SS Central America)
 - lost undetonated fusion warheads (Palomares incident)

- I want the Bayesian posterior probability density function (PDF)
 - The probability of each point in the pMSSM being true after being "confronted" with "evidence"

Bayes' Theorem

For parameters X and data D,

Posterior PDF(
$$X|D$$
) $\sim \mathcal{L}(X|D) \times \text{Prior PDF}(X)$

- In a way, all of science works this way
- This has also led to Bayesian Search Theory, which has been used to recover
 - lost submarines (USS Scorpion)
 - lost oil tankers (MV Derbyshire)
 - lost historical ships (SS Central America)
 - lost undetonated fusion warheads (Palomares incident)

Adaptive Metropolis-Hastings Algorithm (Baltz et al.)

- Method for scanning a parameter space by confronting a prior PDF with new evidence, producing a posterior PDF
- ullet Markov Chain \longrightarrow the next point is chosen only based on the current point
- The chains spread out and randomly explore the parameter space around the BP
- Eventually, the distribution of points converges to the posterior PDF, independent of the choice of prior PDF ‡
- We can also calculate the distribution of experimental observables over the posterior PDF

Adaptive Metropolis-Hastings Algorithm (Baltz et al.)

- Method for scanning a parameter space by confronting a prior PDF with new evidence, producing a posterior PDF
- ullet Markov Chain \longrightarrow the next point is chosen only based on the current point
- The chains spread out and randomly explore the parameter space around the BP
- Eventually, the distribution of points converges to the posterior PDF, independent of the choice of prior PDF ‡
- We can also calculate the distribution of experimental observables over the posterior PDF

Adaptive Metropolis-Hastings Algorithm (Baltz et al.)

* Likelihood function

For experimental measurements $\{M_i\}$ and measurement data $\{(m_i, \sigma_i)\},$

$$\mathcal{L}(X) = \prod_{i} \exp \left[-\frac{(M_i(X) - m_i)^2}{2\sigma_i^2} \right]$$

† Choosing a trial point

The trial point is chosen from a Gaussian distribution with an adaptive covariance matrix:

$$P(\vec{y}) \sim \exp\left[-\frac{1}{2}\vec{y}^T C^{-1}\vec{y}\right]$$

‡ Convergence

Convergence algorithm given in Dunkley et al. (astro-ph/0405462)

Adaptive Metropolis-Hastings Algorithm (Baltz et al.)

* Likelihood function

For experimental measurements $\{M_i\}$ and measurement data $\{(m_i, \sigma_i)\},$

$$\mathcal{L}(X) = \prod_{i} \exp \left[-\frac{(M_i(X) - m_i)^2}{2\sigma_i^2} \right]$$

† Choosing a trial point

The trial point is chosen from a Gaussian distribution with an adaptive covariance matrix:

$$P(\vec{y}) \sim \exp\left[-\frac{1}{2}\vec{y}^T C^{-1}\vec{y}\right]$$

‡ Convergence

Convergence algorithm given in Dunkley et al. (astro-ph/0405462)

Adaptive Metropolis-Hastings Algorithm (Baltz et al.)

* Likelihood function

For experimental measurements $\{M_i\}$ and measurement data $\{(m_i, \sigma_i)\},$

$$\mathcal{L}(X) = \prod_{i} \exp \left[-\frac{(M_i(X) - m_i)^2}{2\sigma_i^2} \right]$$

† Choosing a trial point

The trial point is chosen from a Gaussian distribution with an adaptive covariance matrix:

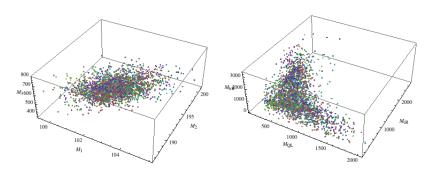
$$P(\vec{y}) \sim \exp\left[-\frac{1}{2}\vec{y}^T C^{-1}\vec{y}\right]$$

‡ Convergence

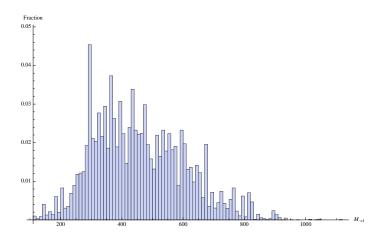
Convergence algorithm given in Dunkley et al. (astro-ph/0405462)

Pretty Pictures

- 11-dimensional subspace, 50 chains, 1M points → 2 days on the Macbook
- Area surrounding benchmark point LCC1 with predicted uncertainties from ILC @1TeV (Baltz et al.)
- Particle spectra calculated with SuSpect (hep-ph/0211331)



Pretty Pictures



I have run out of things to say that can hold your attention

- Markov Chain Monte Carlo is a simple algorithm for generating posterior PDFs
- Posterior PDFs can then be used to generate distributions for not-yet-measured quantities
- MCMCs are especially useful on large-dimensional parameter spaces such as the pMSSM